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ABSTRACT 

The phenomenon of leaky free waves in the modal response of a 

uniform shell is manifest if (1) in the absence of fluid loading the locus of 

the free waves as a function of frequency crosses from the subsonic region 

to the supersonic region across the sonic locus and (2) in the presence of 

fluid loading the fluid surface impedance at and in the vicinity of the sonic 

locus is high and the introduction of this fluid loading does not, in itself, 

prevent the free waves of concern from reaching the sonic locus. In this 

consideration the sonic locus remains fixed relative to the properties of the 

shell and, therefore, changes in the fluid loading, on a given shell, are 

induced by changes in the fluid density only. The phenomenon of leaky 

free waves in the modal response of a uniform cylinder is investigated. It is 

found that two distinct examples of leaky free waves are manifested. The 

first is associated with the flexural free waves that reside in a frequency 

range that lies above the critical frequency with respect to the speed of 

sound in the fluid and the second is associated with the curvature free 

waves that reside in a frequency range that lies below the ring frequency. 

The phenomenon of leaky free waves in these two examples is computed, 

displayed and discussed. 



INTRODUCTION 

In a recent report and a recent paper the authors dealt with the analysis of the 

normalized modal response Vn(k,co) of hybrid and natural fluid loaded cylinders 

subjected to a normalized modal external drive Pen(k,co), where, (k) is the axial 

wavenumber variable, (co) is the frequency variable and (n) is the circumference mode 

index [1,2]. Section II of Reference 2 is to be considered an integral part of this 

introduction. In particular, Eqs. (1) through (15) in Section II of Reference 2 now 

become Eqs. (1) through (15) in the present report. In this section the investigation is 

limited to situations for which (cor / coc) « 1, to the lower mode indices, n < 9; and 

to the spectral range {0, (2cor / coc)} < {(ak), (colcoc)} < {75, 0.6}, where (a) is the 

radius of the cylinder, (cor) is the ring frequency and (coc) is the critical frequency of the 

flexural free waves with respect to the speed of sound (c). [In this report, as in 

Reference 2, the ratio, of the speed of sound (c) to the longitudinal speed (ct) in the 

plating of the cylinder, remains fixed. Therefore, changes in the characteristic impedance 

of the fluid on a cylinder with specific material properties, are induced by changes in the 

fluid density (p) only.] As much as this spectral range is of interest, there is a 

compelling investigative interest to extrapolate the range at both extremities. Of chief 

concern in this report is the extrapolation that involves the phenomenon of "leaky free 

waves". As can be inferred, here the phenomenon of leaky free waves is manifest and 

investigated in the normalized spectral domain; namely, either in the 

{(ak), (co I co c)} -domain or in the {(ak), (co/cor)} -domain [3]. Since this 

phenomenon with respect to the "flexural free waves" at the higher frequency range, 

where (co/coc) > 1.0, is reasonably familiar, whereas this phenomena with respect to 

the "membrane free waves"at the lower frequency range, where (colcor) < 2.0, is 

hardly familiar, the story in this report begins with the extrapolation of the investigation 

into the higher frequency range just defined [3-5]. Under the conditions that 

(ar / ®c)  «  1 and « < 9, the phenomenon of leaky flexural free waves occurs in the 



partial response of a panel, and the modal responses of a hybrid cylinder and a natural 

cylinder [1]. Indeed, the literature deals with this phenomenon in all three of these shells 

[3-5]. Moreover, the differences in this phenomenon with a specific shell form are 

negligible; once it is accounted for in one shell, it is well nigh accounted for in any of the 

others [6]. On the other hand, it is recognized that neither the panel nor the hybrid 

cylinder exhibit membrane free waves and, therefore, only a natural cylinder is relevant 

to investigating the phenomenon of leaky free waves at the lower frequency range, where 

(co/cor) < 2.0 [1,2]. In addition, the present report deals with uniform shells only; 

ribbed shells are dealt with in a companion report that follows. 

Accepting that "familiarity breeds contempt," the leaky flexural free waves 

phenomenon at the higher frequency range, where (col(Oc) > 1.0, is briefly repeated 

here so that the subsequent comparison with the leaky membrane free waves 

phenomenon at the lower frequency range, where (co/cor) < 2.0, can be facilitated. 

At this early stage a word or two about the figures presented in this report may be 

useful. Typically, the figures depict the normalized quantity IS(k,co) I "as a function of 

(ak) in a frequency waterfall format [7]." This quantity is displayed in terms of the 

quantity S^(ak) as a function of (ak). These quantities are related in the manner 

S^(ak) = log [\S{k,(Oo+(q + l)Aa)}\l0q] = q + log \S{k,(00 + (q+l)Aco}\, 

where (co0) is the frequency lower bound; co0<(0, (Aco) is an incremental frequency 

band and (q) is an integer bounded by 0 <, q <, qf. As stated in the figure captions in 

this report, the S(k,co), in S^(ak), is the normalized modal response Voon(k,(o). This 

equation states that the frequency is identified on the step-wise frequency axis by the 

frequency pseudonym 10?, which locates the origin of the curve pertaining to the 

normalized frequency ((o/(oc) = [((oJ(Oc) + (q+1) A((o/(Oc)]. It follows that the 

number of curves in a figure is equal to the "upper bound integer" (qf) plus one and that 



(a>c) is merely a convenient normalizing frequency. The spectral range for a display is 

defined by 

{(ak0), (coJ(Oc)} < {(ak), (a>/o)c)} < {(akf), (cof/coc)}, 

yielding an estimate of qf in the form [(cof/coc) - (co0/coc)]<=(qf+l) A (co/(Oc). 

For example, from Fig. la it is deduced that 60<qf<10; indeed, in this figure 

(co0/(oc) = 0.47, qf=65 and A(co/(Oc) = 0.03, where the normalizing frequency 

(ö)c) is identified to be the critical frequency of the flexural free waves. Analogously, 

from Fig. 6a it is deduced that 9S<qf<l03; indeed, in this figure 

(co01 cor) = 0, qjr = 101 and A(co / cor) = 0.014, where the normalizing frequency (cor) is 

identified to be the ring frequency of the cylinder. Siltuations arise in which a feature in 

a display may be accentuated were the number of the displayed curves made more sparse; 

e.g., by successively displaying only one out of a fixed number of curves. This specific 

procedure is used in this report; e.g., in Fig. la every other curve is omitted and, 

therefore, only 33 out of 66 curves are shown. Analogously, in Fig. 6a two curves out of 

three are omitted and, therefore, only 34 out of 102 curves are shown. Other variations 

on the display theme may be similarly defined and introduced when one or another 

feature calls. The sonic locus positions in the figures are determined, in the context of the 

report, in the compatible form 

(ak)2=[{(<oo/0)c) + (q + l) A((o/coc)}2(akc)
2-n2];    kc=(a)c/c) , 

where, again, (a>c) is merely a convenient normalizing frequency and (q) is the integer 

just defined with respect to the frequency waterfall format. 



I. PHENOMENON OF LEAKY FLEXURAL FREE WAVES IN 

A FLUID LOADED UNIFORM CYLINDER 

From Eq. (13a) the absolute value of the normalized modal response 

\V°°n(k,co)\ [= \Goon (k,co)\] is evaluated as a function of (ak) in a frequency 

waterfall format [1,7]. The evaluation in this section is a "zoom on" the higher spectral 

range in which the critical frequency is approached and surpassed. This spectral range 

starts at the upper limits of the range previously considered in Reference 2 and extends 

the normalized frequency range to an octave above the critical frequency; the zoom on in 

the higher spectral range is thus defined: {70, 0.5} < {(ak), (co/(Oc)} < {150, 2.5}. [As 

already mentioned, in this range the partial (or modal) response is substantially invariant 

to the form of the shell.] The phenomenon of leakage of free waves is advantageously 

introduced via a situation in which it is absent; a situation of light fluid loading. Note 

that a moderate fluid loading is characterized by the standard fluid loading parameter 

ec = 10 , a light fluid loading is characterized by ec < 10 and a heavy fluid loading 

by ec > 10"1. Also note that the change in the fluid loading parameter, in the context of 

this report, is effected by the fluid density (p); the fluid speed of sound (c) remains 

unchanged. Figures la through c depict V „„(k, (o), as a function of (ak) in a frequency 

waterfall format, in the higher spectral range just defined, for three values of the mode 

index; n = 0, 1 and 9, respectively and for light fluid loading; ec = 10"4. The sonic locus 

is superimposed on these figures so that its location can be identified. The flexural locus, 

constituted by the ridges and associated peaks, defines the flexural free waves in these 

figures. Clearly, as the normalized frequency increases from (co/(Oc) = 0.5, the flexural 

locus converges on the sonic locus from the subsonic region. When (col(Oc) reaches 

unity, this convergence is completed. As (ö>/ö)c) is increased beyond unity, the flexural 

locus crosses the sonic locus unimpeded and begins to diverge from it into the supersonic 



region. The flexural locus diverges more and more from the sonic locus as (a)/coc) 

further increases on to two (2) and beyond. 

Figures 2a through c repeat Figs, la through c, respectively, except that the 

standard fluid loading parameter is restored; ec =10 . The sonic locus, defining a 

spectral region of high fluid surface impedance, is discernible in these figures. Even for 

this moderate fluid loading, the fluid surface impedance is high enough to imprint the 

sonic locus on these figures. This high fluid surface impedance at the sonic locus 

establishes a barrier which impedes the crossing of the flexural free waves from the 

subsonic region into the supersonic region. As the normalized frequency (co/coc) 

increases past unity, the flexural locus is held at bay adjacent to the barrier on the 

subsonic side. As the normalized frequency is further increased, however, a gradual 

commencement of leakage of flexural free waves through the barrier at the sonic locus 

into their rightful place in the supersonic region, occurs. The leakage is substantially 

completed when ((o/(Oc) is two (2). 

The higher fluid loading, that is essential to the manifestation of the phenomenon 

of leaky flexural free waves, introduces an additional phenomenon. Clearly, the flexural 

free waves that are in the supersonic region are efficient radiators compared with those in 

the subsonic region. When fluid loading is light, this difference is not significant since 

radiation damping, even for the supersonic-flexural free waves, is not high enough to 

compete with the inherent mechanical damping. However, when fluid loading is 

moderate, the radiation damping of the supersonic flexural free waves becomes 

significant, as can be verified by comparing Figs. 1 and 2. 

Figures 3al, b and c repeat Figs. 2a through c, respectively, except that the fluid 

loading parameter is changed from the moderate standard value of 10"2 to the high value 

of 10"1. Comparing Figs. 3al, b and c and 2a through c, respectively, shows the increased 

effectiveness of the fluid loading barrier in the former set of figures and the accompanied 

decrease in the leakage of flexural free waves across this barrier.  The more gradual 



leakage across the more effective barrier results in a wider frequency band to complete 

the leakage. Thus, this frequency band in Figs. 3al, b and c is wider than in Figs. 2a 

through c, respectively. Indeed, the completion of the leakage in Figs. 3al, b and c takes 

place beyond the frequency range used for these figures, as Fig. 3a2 attests. Moreover, as 

expected, the radiation damping of the flexural free waves, in the supersonic region, is 

higher in Figs. 3al, b and c than in Figs. 2a through c, respectively. 

The phenomenon of leaky free waves is thus predicated on the existence of free 

waves that, in the absence of fluid loading, transit, as a function of frequency, across the 

sonic locus. In addition, the fluid loading needs to be high enough to establish an 

effective barrier that substantially impedes this crossing. The flexural free waves in a 

panel, in a hybrid cylinder and in a natural cylinder satisfy the first of these requirements. 

Are there other types of free waves on a shell that similarly satisfy this first requirement? 

The natural cylinder is the only shell of these mentioned that needs to be examined in 

light of this question; the other two shells support, by definition, flexural free waves only, 

whereas the natural cylinder supports, in addition, membrane free waves. 



H. BEHAVIOR IN THE LOWER FREQUENCY RANGE OF THE MEMBRANE 

FREE WAVES IN A NATURAL UNIFORM CYLINDER 

Again, advantageously the phenomenon of leakage in the membrane free waves is 

introduced via a situation in which it is absent; a situation of light fluid loading. From 

Eq. (13a) the absolute value of the normalized modal response 

\Voon(k,(o)\ = [=|Goort (k,co)\] is evaluated as a function of (ak) in a frequency 

waterfall format [1,7]. This evaluation is confined to the lower spectral range defined by 

{0»0} <{(.ak\ ((ol(ür)} < {25, 2.4}. The modal response, pertaining to the membrane 

free wave, is more characteristically identified in a frequency waterfall representation that 

employs a frequency normalization by the ring frequency (cor), rather than by the critical 

frequency (coc). Figures 4a and bl and 5a and bl are evaluated under standard 

parametric values except that the fluid loading parameter (ec) is changed from the 

standard value of 10"2 to 10"4 and in the first set of figures the mode index (n) is zero and 

in the second the standard value of unity prevails. Figures 4a and 5a pertain to a hybrid 

cylinder and the corresponding Figs. 4bl, and 5bl pertain to a natural cylinder. 

Comparing Figs 4a and 5a with Figs. 4bl and 5bl, respectively, shows that the 

membrane free waves are composed of longitudinal and curvature free waves in Fig. 4b 1 

and of longitudinal, shear and curvature free waves in Fig. 5bl. 

Figure 4b 1, for which the mode index (n) is equal to zero, exhibits the birth of the 

longitudinal free waves at {(ak), ((o/(Or)} ■= {0, 1.0}. In the normalized frequency 

range below unity (co/cor) < 1, the longitudinal locus is absent. Close to its spectral 

place of birth, the speed of the longitudinal free waves is high, decreasing rapidly and 

converging on to the longitudinal speed (ce) as the normalized frequency (co/coc) 

increases past unity; the longitudinal speed (c£) is independent of frequency. On the 

outside and adjacent to the longitudinal locus lies an "anti-longitudinal locus" that is 

defined by valleys and associated nadirs. This anti-longitudinal locus maintains the 

longitudinal speed and it continues uninterrupted as the normalized frequency ((o/a)r) is 

8 



decreased below unity and on to the spectral origin at [(ak), (co/(Or)} = {0,0}. Again, 

there are no shear and anti-shear loci patterns for n = 0 [1]. Finally, the flexural free 

waves at the lower frequency range, where (co/a>r) < 2.0, are superseded by curvature 

free waves. The speed of the curvature free waves surpasses that of the corresponding 

flexural free waves more and more as (co/(Or) decreases below two (2) and on to unity 

[cf. Fig. 4a.]. As (G>/<or) decreases further below unity, the speed of the curvature locus, 

that defines the curvature free waves, assumes the longitudinal speed, positioning itself 

on the outside of and adjacent to the anti-longitudinal locus. The curvature free waves in 

that position are guided by the anti-longitudinal locus all the way to the spectral origin. 

Since the longitudinal speed (c£) is higher than the speed of sound (c), as defined in 

Eq. (15), the curvature free waves emerge as a potential candidate to exhibit the 

phenomenon of leaky free waves. Confluently, this description designates (cor) to be the 

"critical frequency", with respect to the speed of sound (c), of the curvature free waves 

pertaining to the zeroth mode index [2]. 

Figure 5b 1, for which the mode index (n) is equal to the standard value of unity, 

exhibits both the longitudinal locus and the shear locus [1]. Moreover, each is 

accompanied on the outside by an adjacent anti-locus; an anti-longitudinal locus and an 

anti-shear locus. In Fig. 5bl neither of these loci nor the accompanying anti-loci extend 

beyond (6)/ö>r)~(l/2); the birth of the longitudinal locus is at a higher normalized 

frequency than in Fig. 4bl and the birth of the shear locus in Fig. 5bl is at 

(a>/o)r)~(l/2). The longitudinal and anti-longitudinal loci asymptotically approach the 

longitudinal speed (c£) and the shear and anti-shear loci asymptotically approach the 

shear speed (cs); none of these loci cross or even closely approach the sonic locus and, 

therefore, none is a potential candidate to generate leaky free waves. On the other hand, 

again at the lower frequency range, where (a)/a)r) < 2.0, the flexural free waves are 

superseded by curvature free waves. The speed of the curvature free waves surpasses 

that of the corresponding flexural free waves more and more as (co/co ) decreases below 



(2) and on to unity, [cf. Fig. 5a.] As (co/(Or) decreases further below unity, the speed 

of the curvature locus become more and more independent of frequency as it makes its 

way toward the spectral origin at {(ak), (co/G)r)} = {0,0}. In Fig. 5bl this asymptotic 

speed is approximately the shear speed (cs), ha\, may be a shade lower. In addition, the 

off-set in the sonic locus when n = 1 helps render the curvature free waves in Fig. 5bl 

only marginally a potential candidate to exhibit the phenomenon of leaky free waves. 

Clearly, for a mode index (n) that exceeds unity, the curvature of the cylinder is 

even weaker than it is for a mode index of unity and, therefore, the conversion of the 

flexural free waves into curvature free waves is less effective. Under the parametric 

values specified in Eq. (15), which are central in the evaluations in this report, the 

phenomenon of leaky waves is not expected for mode indices that exceed unity, is only 

marginally expected for a mode index of unity, and is definitely expected for a mode 

index of zero. 

10 



HI.   PHENOMENON OF LEAKY CURVATURE FREE WAVES IN A FLUID 

LOADED NATURAL UNIFORM CYLINDER 

A "zoom on region" where the phenomenon of leaky curvature free waves can be 

effectively and conveniently observed is, in the lower spectral range, defined by 

{0,0} <{(ak), (ct)/(Or) < {4.0, 1.4}; this spectral range is sufficient to expose the 

essential features in the phenomenon. Figure 6a is the zoom on region taken out of 

Fig. 4bl; in these figures the mode index (n) is zero and the fluid loading parameter (ec) 

is light at 10 .In Fig. 6a, as in Fig. 4bl, the leaky free waves phenomenon is absent. 

Figure 6b repeats Fig. 6a except that the standard fluid loading parameter is restored; 

ec = 10 . Observe that in general the longitudinal free waves are substantially subdued 

by radiation damping that the fluid loading encourages; after all, the longitudinal locus 

lies in the supersonic spectral region. Moreover, the higher fluid loading in Fig. 6b, as 

compared with that in Fig 6a, tends to delay and mollify the transition of curvature free 

waves from the flexural free waves that they supersede, [cf. Appendix A.] As the 

normalized frequency (co/cor) is decreased past unity, the curvature free waves are held 

at bay by the fluid loading barrier at the sonic locus. Further decrease in (co/cor) 

introduces a gradual leakage of curvature free waves that gradually re-establishes the 

curvature locus at its rightful position adjacent and on the outside of the anti-longitudinal 

locus, [cf. Fig. 6a.] The leakage is complete when the normalized frequency (co/(Or) 

reaches the value of one third (1/3). [cf. Section I and, in particular, the comparison 

between Figs, la and 2a.] Figure 6c repeats Fig. 6b except that the standard fluid 

parameter is changed to the higher value of 10"1. Compared with Fig. 6b, the features in 

Fig. 6c that are associated with the influences of fluid loading and, in particular, with the 

phenomenon of leaky curvature free waves, are more pronounced. Again, the normalized 

frequency band to complete the leakage is wider and extends further toward the spectral 

origin at {(ak\(oo/(or) = {0,0}. [cf. compare Figs. 2 and 3.] 

11 



A zoom on region where the marginal phenomenon of leaky curvature free waves 

can be effectively and conveniently observed is in the same spectral range employed in 

Fig. 6. Figure 7a depicts the zoom on region taken out of Fig. 5b 1; in these figures the 

mode index (n) is unity and the fluid loading parameter (ec) is light at 10"4. In Fig. 7a, 

as in Fig. 5a, the leaky free wave phenomenon is absent even in a marginal form. Figure 

7b repeats Fig. 7a except that the fluid loading parameter is restored to the standard value 

of 10~2. Observe that in general the longitudinal and the shear free waves are 

substantially subdued by radiation damping that is caused by the increase in fluid 

loading; Eq. (15) dictates that both, the longitudinal and shear loci, lie in the supersonic 

spectral region; ct>cs>c. Moreover, the higher fluid loading and mode index in Fig. 

7b, as compared with Figs. 7a and 6b, respectively, conspire to delay and mollify the 

transition of the curvature free waves from the flexural free waves that they supersede. 

As {co I a r) is decreased past unity, the curvature free waves are held at bay by the fluid 

loading barrier at the sonic locus, [cf. Fig. 7a.] There is no true leakage, the curvature 

locus is merely held adjacent and on the subsonic side of the sonic locus all the way to 

the spectral origin. Figure 7c repeats Fig. 7b except that the standard fluid loading 

parameter is changed to the higher value of 10"1. Again, compared with Fig. 7b, the 

features in Fig. 7c that are associated with the influences of fluid loading and, in 

particular, with the marginal phenomenon of leaky curvature free waves, are more 

pronounced. Indeed, the transition of the curvature free waves, from the flexural free 

waves that then supersede, is sufficiently delayed and mollified by the increased fluid 

loading that the phenomenon of leaky curvature free waves, in Fig 7c, is not even 

marginally manifested,   [cf. Figs. 6b and c, and Appendix A.] 

12 



APPENDIX A 

The mollifying effects of fluid loading on scattering and other structural response 

phenomena are well known [1,4,5]. It may then be helpful to briefly consider the role 

that fluid loading may play in the transition, as such, of flexural free waves into curvature 

free waves. Since this transition is more pronounced the lower the mode index is, only 

n = 0 and n = 1 are selected for the investigation in this appendix. 

Figures 4b2 and 4b3 repeat Fig. 4M except that the fluid loading parameters (ec) 

is changed from 10"4 to the standard value of 10"2 and to the higher value of 10"1, 

respectively. Disregarding the phenomenon of leaky curvature free waves that is 

discussed in the text, these three figures clearly show that increases in fluid loading tend 

to delay and mollify the transition to curvature free waves from the flexural free waves 

that they supersede [1,2]. These effects are only slight from Fig 4bl to Fig. 4b2, but are 

substantial from Fig. 4b 1 to Fig. 4b3. Nonetheless, even at the high value of 10"1 for the 

fluid parameter (ec), the delay and mollifying effects of fluid loading are not sufficient 

to scuttle the phenomenon of leaky curvature free waves, as Fig. 6c verifies. 

Figures 5b2 and 5b3 repeat Fig. 5b 1 except that the fluid loading parameter 

(ec) is changed from 10"4 to 10"2 and 10"1, respectively. Again, disregarding the 

phenomenon of leaky curvature free waves that is discussed in the text, these three 

figures clearly show that increases in fluid loading tend to delay and mollify the transition 

to curvature free waves from the flexural free waves that they supersede [1,2]. Although 

these effects are only slight from Fig. 5bl to Fig. 5b2, they are sufficient to render the 

curvature free waves subsonic, notwithstanding that at and in the vicinity of 

(co I cor) ~ (1 / 2) the curvature free waves are only just subsonic, [cf. Fig. 7b.] On the 

other hand, the effects are substantial from Fig. 5bl to Fig. 5b3. Indeed, the high fluid 

loading, in this case, renders the curvature free waves well nigh subsonic, as Fig. 7c 

verifies. 

13 
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